اسمدة متقدم 12

*resistances to radiation .

*necessity of irradiation sterilization .

Fertilization Management *What is Nutrient Management? providing the needed nutrients with possible max. efficiency for achieving economically optimum yield under conditions of a given farming system without depleting soil fertility or harming the environment.

* To optimize the use of fertilizers , accurate information on the following points should be available :

- yield expectations
 - higher yield s remove higher amountsof nutrients which should be replacedthrough fertilization.
- Characteristics of the existing farming system.
- The nutrients needed to be used as fertilizers.
- Water quality and irrigation system used.
- The economics of the system.

Basically, nutrient management is influenced by the crop yield expectation and the soil characteristics. So, different crops are fertilized differently, even if they are grown on the same soil. The same crop is ,also fertilized differently when grown on different soils. Thus, the concepts of fertilizing the soil or the crop are not valid. Introducing high yielding verities also change the picture.

table – Differences in fertilizer doses (kg/ha) used in tomato according to variety (cultivar)

Cultivar	Average yield	N	P ₂ O ₅	K ₂ O
Hybrids (intensive)	120 – 150 t/ha and higher	200-300	150- 200	320-400
Normal Varieties	25-30 t/ha	150-200	100-150	50-150

*Balanced Nutrient Needs

Balanced nutrients management leads to increase the efficiency of all nutrients applied and ,thus, decreasing the amounts of fertilizers used .

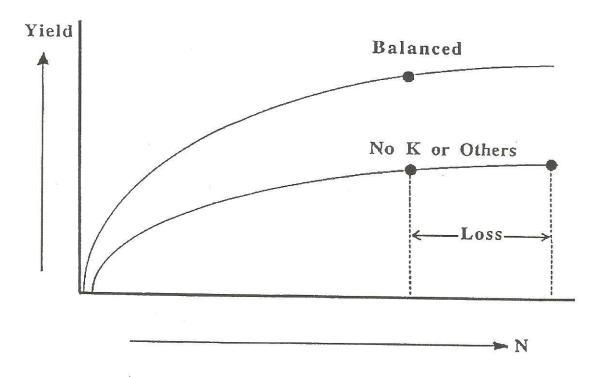
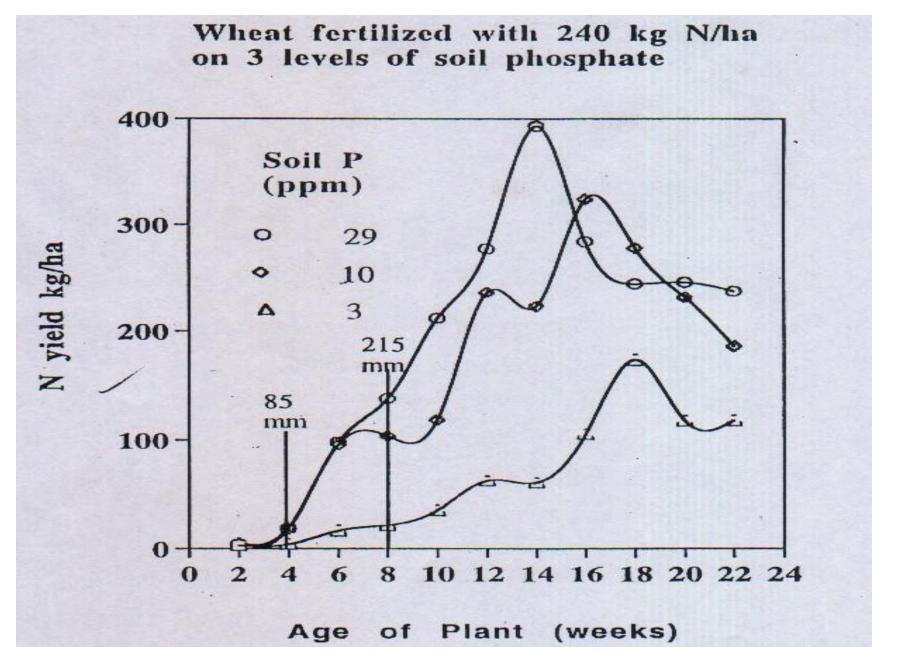



Fig. 1. Effect of balanced nutrient management on yield and efficiency of fertilizers.

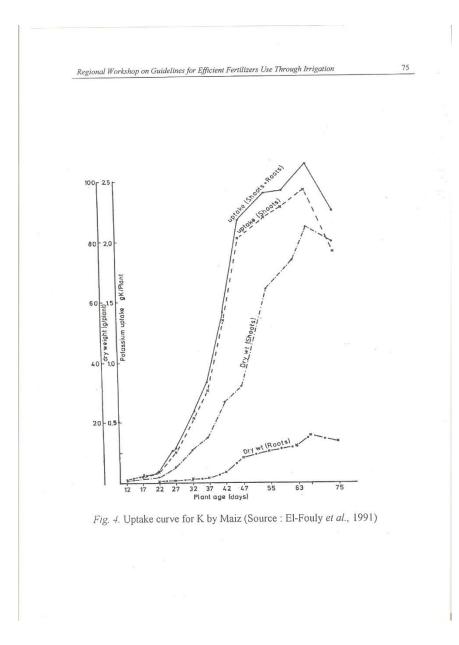
Table: Efficiency of fertilizers in citrus

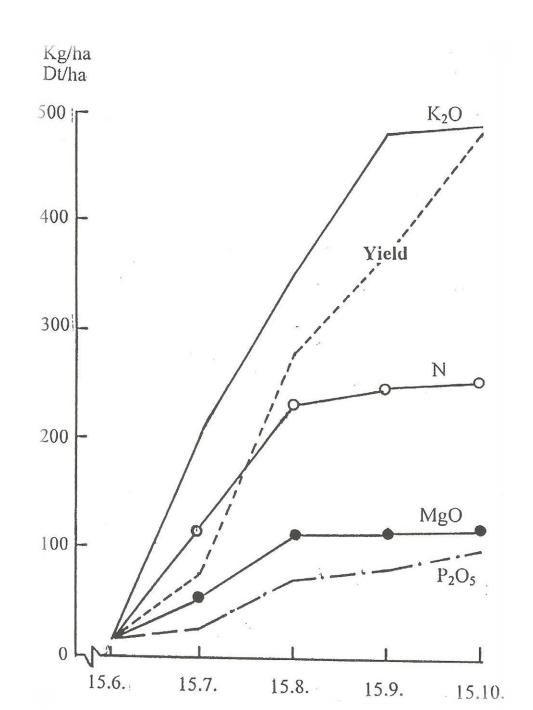
	Kg/t fruit yield			Yield (kg/ha)
	N	P2O5	K2O	
Nutrient removed	2.0	0.5	3.2	
Nutrient applied - in old soil Nutrient recovery by the crop	17- 23 9-12%	3.3- 4.3 12-15%	0- 2.0 Soil depletion	15-20
2- In the expt. (fertigation)	3.8	1.7	5.2	25
Nutrient recovery by the crop	-	-	-	25
	53%	29%	61%	

Table : Amount of nutrients applied to produce one ton orange and average yield in some countries

	N	P2O5	K ₂ O	Average yield (t/ha)
USA	2.3	1.5	2.5	> 48
Morocco	4.6	3.0	4.5	36-48
Egypt	19.5	4.0	0.5	14-20

Table : increase of macronutrients uptake in shoot after foliar spray of Zn+ Mn + Fe.


Crop	% increase			
	Ν	Р	К	Mg
Wheat	25	18	12	6
Rice	20	15	17	5
Maize	20	14	50	10
Fababean	30	11	35	14
Soybean	40	15	25	12
Cotton	29	25	40	11


Table : Response of potato to optimizing fertilizer (less N + K + Micronutrients)

Dose (kg/ha)			Tuber yield (t/ha)
N	P2O5	K20	
455	190	0	23 (100%) With out micronutrient
370	190	115	27 (120%) With out micronutrients
280	190	115	32(139%) With micronutrients

* Nutrients needed differ according to growth stage

Absorption curves show the period of high demand of the plants for a particular crop and provides very important information for efficient management of the nutrient supply over the growth period.

* Estimation of fertilizers requirement

- a- Deficiency symptoms
 - can be used to determine the need of crop for a particular nutrient.
 - deficiency symptoms of a nutrient may be masked by deficiency of other nutrient.
 - hidden hunger.
 - need expert person.
 - do not give any quantitive information about fertilizers recommendation.